Dark Matter¶
Jasem Mutlaq
Wissenschaftler sind sich mittlerweile sehr sicher, dass 90 % der Masse des Universums in einer Form vorliegen, die nicht sichtbar ist.
Despite comprehensive maps of the nearby universe that cover the spectrum from radio to gamma rays, we are only able to account of 10% of the mass that must be out there. As Bruce H. Margon, an astronomer at the University of Washington, told the New York Times in 2001: “It’s a fairly embarrassing situation to admit that we can’t find 90 percent of the universe.”
The term given this “missing mass” is Dark Matter, and those two words pretty well sum up everything we know about it at this point. We know there is “Matter”, because we can see the effects of its gravitational influence. However, the matter emits no detectable electromagnetic radiation at all, hence it is “Dark”. There exist several theories to account for the missing mass ranging from exotic subatomic particles, to a population of isolated black holes, to less exotic brown and white dwarfs. The term “missing mass” might be misleading, since the mass itself is not missing, just its light. But what is exactly dark matter and how do we really know it exists, if we cannot see it?
The story began in 1933 when Astronomer Fritz Zwicky was studying the motions of distant and massive clusters of galaxies, specifically the Coma cluster and the Virgo cluster. Zwicky estimated the mass of each galaxy in the cluster based on their luminosity, and added up all of the galaxy masses to get a total cluster mass. He then made a second, independent estimate of the cluster mass, based on measuring the spread in velocities of the individual galaxies in the cluster. To his surprise, this second dynamical mass estimate was 400 times larger than the estimate based on the galaxy light.
Obwohl diee zu Zwickys Zeit wichtige Hinweise waren, dauerte es noch bis in die 70er Jahre als Wissenschaftler diesen Unterschied richtig beachteten. Zu dieser Zeit wurde die Existenz von dunkler Materie ernst genommen. Das Vorhandensein solcher Materie würde nicht nur den Massenunterschied in Galaxiehaufen erklären, es würde auch weitreichende Konsequenzen für die Evolution und der Bestimmung des Universums selbst haben.
Another phenomenon that suggested the need for dark matter is the rotational curves of Spiral Galaxies. Spiral Galaxies contain a large population of stars that orbit the Galactic center on nearly circular orbits, much like planets orbit a star. Like planetary orbits, stars with larger galactic orbits are expected to have slower orbital speeds (this is just a statement of Kepler’s 3rd Law). Actually, Kepler’s 3rd Law only applies to stars near the perimeter of a Spiral Galaxy, because it assumes the mass enclosed by the orbit to be constant.
Jedoch haben Astronomen Beobachtungen von Bahngeschwindigkeiten von Sternen in den äußeren Regionen von vielen Spiralgalaxien angestellt und keiner folgte, wie erwartet, dem 3. Keplerschen Gesetz. Stattdessen blieben die Bahngeschwindigkeiten konstant. Die Schlussfolgerung ist, dass die Masse, die von größeren Bahnen eingeschlossen ist, sich vergrößert., sogar bei Sternen, die sich scheinbar am Rand der Galaxie befinden. Während sie sich nahe dem Rand des leuchtenden Part der Galaxie befinden, hat die Galaxie ein Massenprofil, dass auch über die sichtbaren Teile der Galaxie hinweg existiert.
Hier ist noch eine Möglichkeit, darüber zu nachzudenken: Nehmen Sie die Sterne nahe des Umfangs einer Spiralgalaxie, mit einer typischen, beobachteten Bahngeschwindigkeit von 200 Kilometern pro Sekunde. Wenn die Galaxie nur aus der Materie bestehen würde, die wir sehen, würden diese Sterne schnell aus der Galaxie fliegen, da die Bahngeschwindigkeiten vier Mal so groß wiedie Fluchtgeschwindigkeit der Galaxie sind. Da Galaxien nicht auseinanderfliegen, muss eine Masse in der Galaxie vorhanden sein. die wir nicht erfassen, wenn wir alle Teile, die wir sehen können, zusammenaddieren.
Several theories have surfaced in literature to account for the missing mass such as WIMPs (Weakly Interacting Massive Particles), MACHOs (MAssive Compact Halo Objects), primordial black holes, massive neutrinos, and others; each with their pros and cons. No single theory has yet been accepted by the astronomical community, because we so far lack the means to conclusively test one theory against the other.
Tipp
You can see the galaxy clusters that Professor Zwicky studied to discover Dark Matter. Use the KStars
Find Objectwindow (Ctrl+F) to center on “M 87” to find the Virgo Cluster, and on “NGC 4884” to find the Coma Cluster. You may have to zoom in to see the galaxies. Note that the Virgo Cluster appears to be much larger on the sky. In reality, Coma is the larger cluster; it only appears smaller because it is further away.