Dark Matter¶
Jasem Mutlaq
Les scientifiques sont maintenant convaincus que 90 % de la masse de l'univers est une forme de matière qui ne peut être vue.
Despite comprehensive maps of the nearby universe that cover the spectrum from radio to gamma rays, we are only able to account of 10% of the mass that must be out there. As Bruce H. Margon, an astronomer at the University of Washington, told the New York Times in 2001: “It's a fairly embarrassing situation to admit that we can't find 90 percent of the universe.”
The term given this “missing mass” is Dark Matter, and those two words pretty well sum up everything we know about it at this point. We know there is “Matter”, because we can see the effects of its gravitational influence. However, the matter emits no detectable electromagnetic radiation at all, hence it is “Dark”. There exist several theories to account for the missing mass ranging from exotic subatomic particles, to a population of isolated black holes, to less exotic brown and white dwarfs. The term “missing mass” might be misleading, since the mass itself is not missing, just its light. But what is exactly dark matter and how do we really know it exists, if we cannot see it?
The story began in 1933 when Astronomer Fritz Zwicky was studying the motions of distant and massive clusters of galaxies, specifically the Coma cluster and the Virgo cluster. Zwicky estimated the mass of each galaxy in the cluster based on their luminosity, and added up all of the galaxy masses to get a total cluster mass. He then made a second, independent estimate of the cluster mass, based on measuring the spread in velocities of the individual galaxies in the cluster. To his surprise, this second dynamical mass estimate was 400 times larger than the estimate based on the galaxy light.
Bien que la preuve fut solide à l'époque de Zwicky, ce n'est que dans les années 1970 que les scientifiques commencèrent à explorer cette différence. C'est à cette époque que l'existence de la matière sombre fut considérée sérieusement. L'existence d'une telle matière ne résoudrait pas seulement le déficit de masse dans les amas de galaxies, il aurait aussi d'autres conséquences pour l'évolution et le destin de l'Univers lui-même.
Another phenomenon that suggested the need for dark matter is the rotational curves of Spiral Galaxies. Spiral Galaxies contain a large population of stars that orbit the Galactic center on nearly circular orbits, much like planets orbit a star. Like planetary orbits, stars with larger galactic orbits are expected to have slower orbital speeds (this is just a statement of Kepler's 3rd Law). Actually, Kepler's 3rd Law only applies to stars near the perimeter of a Spiral Galaxy, because it assumes the mass enclosed by the orbit to be constant.
Cependant, les astronomes ont fait des observations des vitesses orbitales des étoiles dans le pourtour d'un grand nombre de galaxies spirales, et aucune d'entre elles n'obéissait à la troisième loi de Kepler conformément aux attentes. Au lieu de diminuer aux grands rayons, les vitesses orbitales restaient remarquablement constantes. L'implication est que la masse encerclée par les grandes orbites augmente, même pour les étoiles qui sont apparemment proches du bord de la galaxie. Pendant qu'elles sont proches du bord de la partie lumineuse de la galaxie, la galaxie a un profil de masse qui continue apparemment bien au-delà des régions occupées par les étoiles.
Voici une autre manière d'aborder la question. Considérez que les étoiles proches de la périphérie d'une galaxie spirale, avec des vitesses orbitales typiquement observées de 200 kilomètres par seconde. Si la galaxie ne consistait qu'en matière que nous pouvons voir, ces étoiles seraient rapidement éjectées de la galaxie, car leur vitesse orbitale est quatre fois plus grande que la vitesse de libération de la galaxie. Comme les galaxies ne sont pas vues tournant à part, il doit y avoir une masse dans la galaxie que nous ne comptabilisons pas quand nous ajoutons les parties que nous pouvons voir.
Several theories have surfaced in literature to account for the missing mass such as WIMPs (Weakly Interacting Massive Particles), MACHOs (MAssive Compact Halo Objects), primordial black holes, massive neutrinos, and others; each with their pros and cons. No single theory has yet been accepted by the astronomical community, because we so far lack the means to conclusively test one theory against the other.
Astuce
You can see the galaxy clusters that Professor Zwicky studied to discover Dark Matter. Use the KStars
Find Objectwindow (Ctrl+F) to center on “M 87” to find the Virgo Cluster, and on “NGC 4884” to find the Coma Cluster. You may have to zoom in to see the galaxies. Note that the Virgo Cluster appears to be much larger on the sky. In reality, Coma is the larger cluster; it only appears smaller because it is further away.